CONFIDENTIAL Сору RM E50K24 UNAVAILABLE ₩AY 4 1951 # RESEARCH MEMORANDUM COMPRESSOR PERFORMANCE CHARACTERISTICS OF A PYTHON TURBINE-PROPELLER ENGINE INVESTIGATED IN ALTITUDE WIND TUNNEL By Emmert T. Jansen and John E. McAulay Lewis Flight Propulsion Laborator REFERENCE CLASSIFICATION CHANGED and, Ohio UNAVAILABLE **UNCLASSIFIED** NOT TO BE TAKEN FROM THIS ROOM By authority of 4 RN-113 This document contains classified information affecting the National Defense of the United States within the meaning of the Esphonage Act, USC 18031 and 33. In transmission or the revealing of its contents in any manner to an unauthorities period its prohibities by law. Information so classified miny to imparted only to persons in the military and naval services of the United States, approprints (Stifian officers and amployees of the Pederal Covernment who have a legitimate interest therein, and to United States citizens of known loyalty and discretion who of necessity must be informed thereof. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON N A C A LIBRARY LAMPLEY ARRIVATORY # CONFIDENTIAL UNAVAILABLE NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM COMPRESSOR PERFORMANCE CHARACTERISTICS OF A PYTHON TURBINE-PROPELLER ENGINE INVESTIGATED IN ALTITUDE WIND TUNNEL By Emmert T. Jansen and John E. McAulay #### SUMMARY An investigation has been conducted in the NACA Lewis altitude wind tunnel to determine the performance of the Python turbine-propeller engine. Compressor-performance data were obtained for a range of simulated altitudes at a single cowl-inlet ram pressure ratio while the engine was run over its full operable range of engine speeds. At each engine speed, data were obtained over a range of compressor pressure ratios by extracting various amounts of power from the turbine. Over the range of conditions investigated at each altitude, the variation in compressor efficiency was small, which allowed the compressor a wide range of operation close to optimum efficiency. At constant corrected engine speed and turbine-inlet temperature, compressor efficiency decreased approximately 0.04 for an increase in altitude from 10,000 to 40,000 feet. The maximum compressor efficiency obtained was 0.804 and occurred at an altitude of 10,000 feet, a corrected air flow of 42.8 pounds per second, and a compressor pressure ratio of 3.8, which corresponds to a corrected engine speed of 7000 rpm and a turbine-outlet temperature of 1264° R. The velocity profile at the compressor outlet was in general unaffected by changes in altitude, turbine-inlet temperature, or engine speed. #### INTRODUCTION An investigation to determine the static and dynamic performance characteristics at altitude of a Python turbine-propeller engine has been conducted in the NACA Lewis altitude wind tunnel. As part of this investigation, performance data for the compressor operating as an integral component of the engine were obtained over a range of altitudes and engine speeds at a single cowl-inlet ram pressure ratio; at each engine speed, data were obtained over a range of compressor pressure ratios by extracting various amounts of power from the turbine. The performance of the l4-stage axial-flow compressor is presented graphically to show the effects of variations in compressor pressure ratio and in engine speed and to show a general trend with altitude. Compressor performance deterioration caused by oil and dust accumulation on the compressor blades is discussed. A complete tabulation of the compressor performance data is also presented. #### APPARATUS AND PROCEDURE #### Engine The Python turbine-propeller production engine has a static sealevel nominal rating of 3670 shaft horsepower and 1150 pounds of jet thrust at an engine speed of 8000 rpm and a turbine-outlet temperature of 590°C (1554°R). The maximum diameter of the engine is $54\frac{1}{2}$ inches and the net dry weight is 3150 pounds. The main components of the engine include propeller-reduction gearing, a 14-stage axialflow compressor, 11 combustors spaced around the compressor casing, a two-stage turbine, a tail pipe, and a fixed-area exhaust nozzle. #### Compressor The compressor has an air-flow capactiy of approximately 54.2 pounds per second and a pressure ratio of 5.1 when the engine is operating at rated sea-level static conditions. Air enters the engine through an inlet duct, which forms an annulus around the outer diameter of the engine (fig. 1) and is located approximately 60 inches aft of the rear propeller. A screen installed in this annulus prevents foreign objects from entering the compressor. From the inlet annulus, the air-flow passage is divided into 11 convergent throats and is turned inward 180° to the entry annulus of the compressor. The air passes forward through the compressor into the diffuser annulus, where it is turned outward 90° with the aid of guide vanes; the annulus is then divided into 11 combustion-chamber-inlet elbows, where the air is turned rearward 90° with the aid of guide vanes and passes into the combustion chambers. To assist in starting and accelerating to an operable engine speed, air is bled from the compressor outlet to the atmosphere through a blow-off valve. During normal operation this blow-off valve remains closed. Air is bled from the fifth stage of the compressor to cool the rear bearing and the rear face of the turbine. Air is bled from the tenth stage to cool the front face of the turbine. Air leakage through labyrinth seals at the compressor outlet is piped back into the tail pipe. Photographs of the compressor rotor and stator are presented in figures 2 and 3, respectively. The rotor blades of the first five stages are fastened on a uniformly tapered hub, whereas those of the final nine stages are fastened on a constant-diameter hub. The rotor-tip diameter is 20.35 inches through the first five stages and tapers to 17.75 inches at the fourteenth stage. The hub-tip ratios of the first, fifth, and fourteenth stages are about 0.61, 0.74, and 0.85, respectively. #### Installation and Instrumentation The engine was mounted in a wing section that spanned the 20-foot-diameter test section of the altitude wind tunnel (fig. 4). Refrigerated air was supplied to the engine from the tunnel air stream. Pressures and temperatures were measured by instrumentation installed at several stations throughout the engine (fig. 1). Detail sketches showing the locations of instrumentation at stations 1, 2, 3, and 5 are presented in figures 5, 6, 7, and 8, respectively. Compressorstage static-pressure wall orifices were located in the planes of the leading edges of the rotor stages throughout the compressor. #### Procedure Performance data were obtained at an average cowl-inlet ram pressure ratio of 1.03 at pressure altitudes of 10,000, 20,000, 30,000 and 40,000 feet. Engine speed was varied from 6800 to 8000 rpm; at each engine speed, data were obtained over a range of compressor pressure ratio, which was changed by varying turbine-inlet temperature. The minimum engine flight idling speed was approximately 6500 rpm and was regulated by the engine control mechanism, which was preset at sea-level conditions. As altitude was increased to 40,000 feet, the minimum operable engine speed increased to approximately 7200 rpm. A power check run was made each day at a pressure altitude of 10,000 feet, cowl-inlet ram pressure ratio of 1.03, engine speed of 8000 rpm, and engine-inlet temperature of 59° F for four turbine temperatures. Preceding the power check run each day, kerosene was sprayed into the compressor inlet for 30 minutes while the engine was operating at idle speed in an attempt to clean the compressor-blade surfaces. For all flight conditions except those of the power check runs, refrigerated air was supplied to the engine at the standard NACA temperature for each flight condition except that the minimum air temperature was about -25° F. The symbols and the methods of calculation are given in the appendix. #### RESULTS AND DISCUSSION The air-flow passage through the engine makes two 180° turns, one ahead and the other aft of the compressor rotor. The engine manufacturer furnished information that the energy loss caused by the turn ahead of the compressor rotor is 18 percent of the compressor-inlet velocity head (station 1) and that the energy loss resulting from the turn aft of the compressor is 34 percent of the compressor-outlet velocity head (station 2). Because of structural limitations of the engine, the compressor-inlet and compressor-outlet stations (stations 1 and 2) had to be so located as to include these energy losses in the pressure and temperature measurements. The inclusion of these losses in the compressor performance resulted in a reduction in compressor efficiency of less than 0.01 for all conditions investigated. #### Deterioration of Compressor Performance Oil leakage from the accessory gear box could enter the compressor inlet and provide a sticky surface on the compressor blades and turning vanes, which permitted an accumulation of foreign particles from the tunnel air stream on these surfaces. The use of kerosene sprayed into the compressor-inlet as a cleaning solution at the most retarded but did not eliminate the accumulation of foreign particles on the compressor surfaces. This accumulation of foreign particles resulted in a progressive decrease in compressor performance with increasing engine operational time. The decrease in compressor performance is shown in figure 9 for an engine operational time interval in the altitude wind tunnel of approximately 32 hours. At each altitude and engine speed as engine operation time increased, air flow and compressor pressure ratio decreased for a given turbineinlet temperature. The reduction in air flow required a decrease in engine fuel flow in order that the constant turbine-inlet temperature could be maintained. For this deterioration, however, the value of compressor
efficiency remained unchanged. In order for the efficiency to remain constant, the actual work per pound of air of the compressor must decrease by the same ratio that the ideal work per pound of air decreases. An explanation of this characteristic is that in one or several of the leading stages of the compressor, the efficiency may decrease in such a manner as to improve the existing conditions of the air flow at some of the latter stages, with the over-all result that the compressor efficiency remained approximately constant. The loss in air flow and compressor pressure ratio with increasing engine operational time caused substantial reductions in shaft horsepower at a given turbine-inlet temperature. The deterioration effect was determined only for the rated engine speed at the four altitudes investigated and the information is insufficient to permit adjusting the data for all engine speeds. Because of this deterioration, quantitative evaluation of variations in performance cannot be made for various altitudes. For any given altitude except 10,000 feet, however, the performance data were obtained over an engine operational time interval of $3\frac{1}{2}$ hours or less. Performance data for the rated engine speed at an altitude of 10,000 feet were obtained 10 hours earlier than the performance data for the other engine speeds at this altitude. The maximum change in compressor characteristics for the time interval of $3\frac{1}{2}$ hours is a 1-percent decrease in corrected air flow and in compressor pressure ratio while the compressor efficiency remained approximately constant. Quantitative evaluation of variations in performance can therefore be individually made for each altitude. #### Compressor Performance 2029 Compressor efficiency. - Compressor efficiency is presented in figure 10 as a function of corrected turbine-inlet temperature for the four altitudes investigated. The turbine-inlet temperature is used as the independent variable because at constant engine speed with a choked turbine nozzle the temperature is proportional to the square of the compressor-outlet total pressure and thus provides a connecting link for the compressor performance with engine and turbine performance. In general, the change in compressor efficiency was relatively small over the range of conditions investigated at each altitude, which allows the compressor a wide range of operation near optimum efficiency. For all altitudes and flight conditions investigated, the compressor efficiency variation was only from 0.804 to 0.695. The maximum compressor efficiency of 0.804 was obtained at an altitude of 10,000 feet, a corrected air flow of 42.8 pounds per second, and a compressor pressure ratio of 3.8, which corresponds to a corrected engine speed of 7000 rpm and a turbine-outlet temperature of 1264° R. At each altitude, the decrease in compressor efficiency that accompanied a change from minimum to maximum engine speed at constant corrected turbine-inlet temperature varied between 0.03 and 0.06; at any given engine speed the trend was for an efficiency rise of from 0.01 to 0.04 as turbine-inlet temperature was varied from minimum to the maximum allowable value. The data in figure 10 are cross-plotted in figure 11 to illustrate the effect of altitude on compressor efficiency at constant corrected engine speed and turbine-inlet temperature. At constant values of corrected engine speed and turbine-inlet temperature, compressor efficiency decreased a maximum of only 0.04 for an altitude increase from 10,000 to 40,000 feet. Because compressor performance deterioration did not affect compressor efficiency, the loss in efficiency with increasing altitude may be largely attributed to the Reynolds number effect on the compressor performance. Compressor performance maps. - Compressor performance maps with contours of constant compressor efficiency and lines of constant corrected turbine-inlet temperature superimposed are presented in figure 12 for altitudes of 10,000, 20,000, 30,000, and 40,000 feet. If the corrected turbine-inlet temperature is decreased at constant corrected engine speed, the corrected air flow increases, with the increase in air flow being greater at low engine speeds. A decrease in corrected engine speed at constant corrected turbine-inlet temperature results in decreases in corrected air flow and in compressor pressure ratio. Because the altitude effect and compressor deterioration effect are inseparable, it is not possible to accurately evaluate the shift in lines of constant corrected engine speed and contours of constant compressor efficiency with changes in altitude. At constant corrected engine speed and turbine-inlet temperature the general trend of the compressor performance with increase in altitude is a decrease in air flow and in compressor pressure ratio. #### Velocity and Static-Pressure Profiles The velocity profiles at the compressor outlet are shown in figure 13. Figure 13(a) represents the compressor-outlet velocity profile for a single engine and flight condition. Individual radial pressure measurements for rakes equally spaced circumferentially from a radial center line through the compressor-outlet passage have been averaged. Figures 13(b) to 13(d) represent the velocity profiles at the compressor outlet for various operating conditions. In every case the velocity is lower at the inner wall, which may be caused by the elbow preceding this station. The data indicated no general effect on the velocity profile with variations in altitude, corrected turbine-inlet temperature, or corrected engine speed. The rotor-stage static-pressure ratios for ranges of altitude, corrected turbine-inlet temperature, and corrected engine speed are presented in figure 14. A complete tabulation of compressor performance data is presented in table I and compressor performance deterioration data in table II. ### SUMMARY OF RESULTS From an investigation of a Python turbine-propeller engine in the NACA Lewis altitude wind tunnel over a range of simulated altitudes and at a cowl-inlet ram pressure ratio of 1.03, the following results relating to the compressor were obtained: 1. The variation in compressor efficiency was small for all operating conditions investigated at each altitude, thereby permitting the compressor a wide range of operation close to optimum efficiency. - 2. Increasing altitude from 10,000 to 40,000 feet at a given corrected engine speed decreased compressor efficiency approximately 0.04 for all corrected turbine-inlet temperatures. This loss in compressor efficiency with increasing altitude may be largely attributed to the Reynolds number effect on the compressor performance. - 3. The maximum compressor efficiency of 0.804 was obtained at an altitude of 10,000 feet, a corrected air flow of 42.8 pounds per second, and a compressor pressure ratio of 3.8, which corresponds to a corrected engine speed of 7000 rpm and a turbine-outlet temperature of 1264° R. - 4. In general, the velocity profiles at the compressor outlet were unaffected by changes in altitude, turbine-inlet temperature, and engine speed. Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio. # APPENDIX - CALCULATIONS ## Symbols The following symbols are used in the calculations: | A . | area, sq ft | |----------------|---| | a | stagnation speed of sound in air, ft/sec. | | c _p | specific heat at constant pressure, Btu/(lb)(OR) | | CT | thermal expansion ratio, ratio of hot exhaust-nozzle area to cold exhaust-nozzle area | | D. | compressor rotor-blade tip-diameter, ft | | ghp | gear horsepower | | g | acceleration due to gravity, 32.2 ft/sec2 | | н . | enthalpy, Btu/lb | | М | Mach number | | N | engine speed, rpm | | P | total pressure, lb/sq ft absolute | | р | static pressure, lb/sq ft absolute | | R . | gas constant, 53.4 ft-lb/(lb)(OR) | | shp | shaft horsepower | | T | total temperature, ^O R | | T _i | indicated temperature, OR | | t | static temperature, OR | | υ | compressor rotor tip speed, ft/sec | | v · | velocity, ft/sec | | Wa | āir flow, lb/sec | | W _f | fuel flow, lb/hr | $W_{\mathbf{g}}$ $W_{\mathbf{c}}$ W_{rb} W_{t} gas flow, lb/sec compressor leakage air flow, lb/sec turbine cooling air flow, lb/sec rear bearing cooling air flow, lb/sec | | 9050 | 2003 | | |--|------|------|--| | | | | | | | - | | | | | | | | | | | | | | r | ratio of specific heats | |---------------------------------|--| | δ ₁ | ratio of absolute total pressure at cowl inlet to absolute static pressure at NACA standard atmospheric sea-level conditions | | θ_{1} | ratio of absolute total temperature at cowl inlet to absolute static temperature at NACA standard atmospheric sea-level conditions | | η_c | adiabatic compressor efficiency | | Subscripts | : | | c | compressor | | t | turbine | | 0 | free-stream conditions | | 1 | cowl or compressor inlet | | la | compressor rotor stages | | 2 | compressor outlet | | 3 | turbine inlet | | 4 | turbine outlet | | 5 | tail pipe | | Generalizi | ng parameters: | | $N/\sqrt{\theta_1}$ | corrected engine speed, rpm | | T_3/θ_1 | corrected turbine-inlet total temperature, OR | | $W_{a,1}\sqrt{\theta_1}/\delta$ | corrected engine-inlet air flow, lb/sec | ### HACA MI BOOKS #### Methods of Calculation Temperatures. - Static temperatures were determined from indicated temperatures with the following relation: $$t = \frac{T_1}{1 + 0.85 \left[\left(\frac{P}{p} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right]}$$ (1) where 0.85 is the impact recovery factor for the type of thermocouple used. Temperature measurements were obtained by means of thermocouples at all stations except the turbine inlet, station 3. The high temperature level and
difficulty of installing instrumentation at this station would not permit the measurement of temperature with thermocouples. The turbine-inlet total temperature was therefore evaluated in the following manner: The work of the turbine is equal to the work of the compressor plus the work available for the propeller along with the gear losses. In terms of total enthalpy the relation is $$W_{g,3}(H_3 - H_4) = \frac{550}{778} (shp + ghp) + (W_{a,2} H_2 - W_{a,1} H_1)$$ (2) where $$W_{a,2} = W_{g,3} - \frac{W_{f}}{3600}$$ and $$H_3 = c_p T_3$$ The shaft horsepower was obtained from a torquemeter reading. The gear horsepower was obtained from a curve supplied by the engine manufacturer showing gear horsepower as a function of shaft horsepower. Gas flow. - Gas flow through the tail pipe of the engine may be determined using pressure and temperature measurements at station 5 by the equation $$W_{g,5} = p_5 C_T A_5 \sqrt{\frac{2\gamma_5 g}{(\gamma_5 - 1)Rt_5} \left[\frac{p_5}{p_5} \right]^{\frac{\gamma_5 - 1}{\gamma_5}} - 1}$$ (3) where C_{T} is the correction for thermal expansion of the exhaust nozzle. The turbine gas flow is $$W_{g,3} = W_{g,5} - W_{c} - W_{t}$$ where compressor leakage and all cooling air flow were determined from pressure and temperature measurements. This calculation of gas flow gave values having the correct magnitude but the scatter was excessive owing to the difficulty in measuring the small dynamic pressures. Because the turbine nozzle was choked for the range of conditions investigated allowing the assumption to be made that the turbine - nozzle vena contracta area is constant, the following equation was used to obtain the final calculated gas flow: $$W_{g,3} = \sqrt{\frac{g}{R}} \frac{P_3}{\sqrt{T_3}} \frac{A_{3,av}\sqrt{\gamma_3}}{\frac{\gamma_3+1}{2(\gamma_3-1)}}$$ $$\left(\frac{1+\gamma_3}{2}\right)^{\frac{2(\gamma_3-1)}{2}}$$ in which the average turbine-nozzle vena contracts area was calculated from equation (4) using the tail-pipe (station 5) gas flows and turbine-inlet total temperature based on tail-pipe gas flow. Using this average effective turbine-throat area and turbine-inlet temperature, the turbine gas flow was determined from equation (4). With this turbine gas flow, a recalculation was made for turbine-inlet temperature, which showed a negligible change in the recalculated temperature from the original calculated temperature. The error in turbine gas flow is the square root of the ratio of the two temperatures and therefore can be neglected. Air flow. - Engine-inlet air flow is $$W_{a,1} = W_{g,3} + W_{rb} + W_c + W_t - \frac{W_f}{3600}$$ (5) which is the air flow used throughout this report. Compressor efficiency. - Adiabatic compressor efficiency was calculated using the following equation: $$\eta_{c} = \frac{\left(\frac{P_{Z}}{P_{1}}\right)^{\frac{\gamma-1}{\gamma}} - 1}{\left(\frac{T_{Z}}{T_{1}} - 1\right)} \tag{6}$$ where γ is based on the average temperature of the air in the compressor. Compressor Mach number. - The compressor Mach number is defined as the ratio of the tip speed of the compressor first-stage rotor blade to the speed of sound in air at the total temperature of the engine inlet air. The equation used is $$M_{\rm C} = \frac{U}{a_1} = \frac{\pi DN}{60\sqrt{\gamma gRT_1}} \tag{7}$$ Compressor-outlet velocity. - The compressor-outlet velocity was determined by the equation $$V_2 = \sqrt{\frac{2\gamma}{\gamma - 1}} gRT_2 \left[1 - \left(\frac{p_2}{P_2}\right)^{\frac{\gamma - 1}{\gamma}} \right]$$ where individual total pressures and average static pressures and total temperatures were used. TABLE I - PERFORMANCE DATA OF PYTHON TURBINE-PROPELLER | |) |----------|--------|------------|----------------|-------------------|--------------|--|-------------------|-----------------|--------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------| | | } | 1 | } | 94 | | Į. | <u> </u> | wl in | | 1 | | | | | | | | | | ٠. | | | - | | | | pres
P0 | | | | ľ | Ė | r. | 4 | | | | | | | | | | | | | | , - | | | : | 7. | * | flow | 8 | of the contract contrac | atur | br. | 4 . | | Con | pres | 10r-14 | tor- | stago | stat: | lo pr | essure | o, (11 | /80 1 | t aba | .) | • | | | | et r | p e | ne1 | horsepow | ott og | i per | | 100 | 1 | | | | • | • | | | | | | - | | _ | | | •g | -inle | • | 4_ | | -150 | 1 40 02 | p pre | 3 5 | | | | • | | | | | | | | | | | | Bun | tit | Cowl- | Rogin
(rpm) | Sperine
(15/br | Shaft | Tunno
(15/s | 1 ot 1 | Total
(1b/sq | 17. | | | | | | | Sta | ges | · · · · · · · · · · · · · · · · · · · | | | | | , | | <u> </u> | 10.000 | 1.028 | | 2550 | | | 485 | 1492 | | 1116 | 1278 | 3
1517 | 1745 | 5
1982 | 2285 | 7
2623 | 8 3052 | 9
3524 | 4051 | 11 | 12 | 13
6072 | 6776 | | 2 | | 1.028 | | 2170
2055 | 2398 | 1454 | 485
483 | 1494 | 1447 | | 1268 | | 1726 | | | 2584 | 3014 | 5472
5450 | 3964 | 4584 | 5189 | 5957 | | | 4 5 | | 1.028 | | 1645 | 1419 | 1448 | 484 | 1488
1497 | | 1083 | 1231 | | 1667
1631 | 1893 | 2153
2082 | 2456
2349 | 2850 | 5272
5102 | 3730 | 4293 | 4849
4559 | 5574 | 6180 | | 8 | - | 1.026 | 7806 | 2240 | 2491 | | 489
486 | 1491 | 1449 | 1168
1152 | 1366 | 1605
1575 | 1823 | 2055 | | | 3076 | 3506
3462 | 3984
3926 | 4562
4489 | | 5836
5721 | 6463 | | 8 | | 1.026 | ` | 1920 | 2085
1317 | 1451 | 488
484 | 1489 | 1447 | 1167 | 1350 | 1583
1535 | 1801
1746 | 2026 | 2308
2217 | 2618
2513 | | 3427 | 3885
3710 | 4434 | 4976 | 5652
5392 | 6236
5920 | | 10 | | 1.027 | 7606 | 1010 | 316 | 1446 | 490
485 | 1485
1488 | 1441 | 1122 | 1296
1398 | 1509
1650 | 1699
1848 | 1897 | 2156
2348 | 2589
2672 | 2727 | 5079
5482 | | 3924 | | 4945 | 5381 | | 2 | | 1.026 | | 1975
1820 | 2139 | 1448 | 484
488 | 1486
1489 | | 1180 | 1391
1394 | 1616 | 1834 | 2067
2055 | 2541
2525 | | 5045 | | 5904
5837 | 4425 | 4932
4850 | 5572 | | | 4.5 | | 1.026 | | 1420 | 1165 | | 486
462 | 1485 | | 1167 | 1365 | 1585
1540 | 1780
1730 | 1991 | 2252
2173 | 2553
2427 | 2585
2757 | 3258 | 3660 | 4138 | 4605
4299 | 5194 | 5659 | | 5 | | 1.026 | 7406 | | 1978 | 1451 | 488
487 | 1489 | 1453
1445 | | 1443 | 1551
1640 | 1879
1851 | 2098
2070 | | 2861 | | 3407 | 3823
3773 | 4301 | 4788
4703 | 5343 | 5836 | | 8 | | 1.025 | | 1660 | 1641 | | 490
493 | 1494 | 1457
1440 | 1225 | 1429 | 1647 | 1851
1811 | 2070 | 2323 | | 2971 | 3337 | 3731
3564 | | 4639 | 5216
4951 | | | 20 | | 1.025 | 7205 | 910 | | 1461 | 487
490 | 1467 | 1449 | 1190 | 1387 | 1584
1656 | 1774 | 1964 | 2196
2318 | 2450 | 2759
2945 | 3090 | 3428 | 3830
4099 | 4210 | | 5033 | | 2 | 1 | 1.025 | | 1600 | 1624 | 1452 | 490
486 | 1489 | | 1255 | 1459 | 1663 | 1860
1843 | | 2311 | | 2923
2892 | 3258 | 3641 | 4078 | | 5014 | 6437 | | 4 | | 1.025 | | 1220
875 | 889 | 1452 | 487
491 | | 1454 | 1237 | 1454 | 1631
1693 | 1828
1783 | 2018
1959 | 2251 | 2504 | 2828 | 3159 | 3497
3325 | 3905 | 4292
4043 | 4778 | 5158
4789 | | 26
27 | [] | | 6808 | 1400
1560 | 1235 | 1447 | 490 | | 1458 | 1294 | 1484 | 1646
1675 | 1843 | 2026 | 2245 | 2491
2485 | 9780 | 3088 | 3378 | 3744 | 4096 | | 4870
4893 | | 88 | | 1.025 | | 1220
1050 | 965 | 1452 | 490
489 | 1490 | 1462 | 1288 | 1469 | 1659 | 1828
1748 | | 2215
2219 | | 2736
2726 | 3018 | 3321 | 3680 | 4018 | | 4757
4663 | | 1 | 20.000 | 1.028 | 8008 | 810 | | 1449 | 487
458 | 1487 | 1457
961 | 1266
752 | 1449
830 | 1618 | 1801 | 1970 | 2174 | 2565 | 2646 | | | 3245 | 8800 | 4173 | 4454 | | 2 | 1 1 | 1.028 | | 1680 | 1683 | 975
975 |
456
456 | 1000 | 968 | 726
729 | 831
815 | 979 | | 1317 | 1521 | | 2056 | 2394 | 2760
2693 | 3211
3143 | | 4210
4122 | 4717
4622 | | 4 | | 1.027 | | | 1204
361 | 968 | 45B
454 | 994
998 | 982
986 | 716 | 800
781 | 955
989 | 1105 | | 1484 | 1638
1541 | 1918 | | | 2954
2696 | | 3877
3534 | 4327
3921 | | 8 | 1 | | | 1675 | 1891
1740 | 969 | 456
457 | 996
1005 | 966
973 | 757 | 855
869 | 1053 | 1186 | 1555
1548 | 1559 | 1799
1785 | 2094 | 2418 | 2756
2756 | 3200
3165 | | | 4608
4544 | | 8
9 | 1 1 | 1.027 | | 1420 | 1545
1522 | 976 | 157 | 1002 | 972 | 749
751
746 | 863
851 | 1025 | 1173 | 1342 | | 1765 | 2039
2013 | 2542 | 2656
2654 | 3088
3062 | | 3989
3970 | 4483
4481 | | 0 | } i | 1.027 | | | 1024
292 | 969
975 | 453
454
482 | 995 | 964 | 732
734 | 837
818 | 999
973 | 1183 | 1281 | 1464 | 1688 | 1928 | 2210 | | 2907
2684 | | 3759 | 4174
3796 | | 2 | 1 | | | 1515 | 1701
1565 | 970 | 456
461 | 996 | 968 | 772 | 906 | 1068 | 1215 | 1384 | 1589 | 1821 | 2102 | 2405 | 2722 | 3123
3119 | | 5982
5945 | 4598
4327 | | 6 | 1 1 | 1.027 | | 1420 | 1565
1392 | 969 | 456
457 | 995 | 987
974 | 779 | 908 | 1068 | 1222 | | 1582 | | 2095 | 2398 | | 3109
3047 | | 5940 | 4541
4879 | | 6
7 |] : | 1.027 | | 1065 | 949 | 965 | 455
455 | 992 | 963
964 | 757
742 | | 1024 | 1179 | 1327 | 1517 | 1714 | 1975 | | 2551
2554 | 2870
2685 | | 3671 | 4037
3699 | | 8 | | | | 1418
1345 | 1856
1444 | 971 | 454
452 | 997 | 978 | 802 | 943 | | 1260 | | 1619 | 1837 | | | 2710
2676 | 3062
3028 | | 5822
5774 | 4181
4126 | | 0 | } . | 1.027 | | | 1305
883 | 971 | 450
454 | 997
992 | 971 | 798
795 | 944 | 1092 | 1247
1215 | 1409 | 1606 | 1824 | 2091 | 2559 | 2655
2546 | 3014
2877 | | 3783 | 1105 | | | 1 | 10021 | | | | | 452 | 992 | 970 | 781 | | 1055 | | | | | 1914 | | 2407 | 9703 | | | 3670
3583 | | 2 | | 1.025 | 7205 | 680
1285 | 272
1345 | | 454 | 994 | 971 | 828 | | 1117 | | | | 1835 | | | 2638 | 2954 | | | 3954 | | | Compy | essor | | | | Pa 4 2 - | 194 | | 1 | | | · · | ,— | Camera | | | | | |----------------------------------|------------------|-------------------------------------|-----------------------------|---------------------------------|---------------------|---------------------|--------------------|----------------|----------------------|---------------------|----------------|---|-------------------------|--|------------------------------------|------------------------|-------------------------------|-------------| | 9.0 | ı
L | Jasor | | | \vdash | ail ; | | | | | | _ | | Corre | | ł | wind | | | ightening-
pressure
ps.) | log temper | - | - | total. | ture, | P5 | r, ps | • Fure | eli
Er
Er | цо | nod (| (1b/sec | r flow | r flow, | total
T3/0 | effici-
(percent) | F.a | | | 1111 | total | total
ft abs. | statio | iniet
fe P3 | temperatur
R) | pressure
ft abs. | pressur
ft abs. | Pg/P1 | 100 /M | 2 S | De atr | eln's | Let air
Lb/sec) | -tnlet at | inlet | Lor ef | ongine
altitu
(br) | | | Outlot a
vane sta
(1b/aq f | Outlet
Ature, | Outlet tot
pressure
(lb/sq ft | Outlet
pressur
(lb/sq | Turbine-
pressur
(1b/sq 1 | Total te
Ts (oR) | Total p | tatio
Lb/eq | mprest
t10, | Correcte
speed, K | Compress
number, | Tail-pi | furbine- | Cowl-inlet
Wa,l (1b/ | Wa,1 /0 | Turbine-ini
temperature
(on) | Compressor
ency, ho | Average
time in
tumel (| Run | | 7255 | 869 | 8063 | 7910 | 7762 | 1452 | 1636 | 1478 | 5.404 | 8278 | 0.659 | | | 39.68 | 54.42 | | 77.4 | 3°5
4 11 12 | ř. | | 7090 | 868
863 | 7905
7826 | 7755
7674 | 7608
7533 | 1389
1352 | 1630
1625 | 1478 | 5.291 | 8278
8302 | .659
.661 | 39.97
39.84 | 39.27
39.32
39.60 | 39.71 | 54.58
54.57 | 2094
2016
1965 | 76.4 | 3.2 | 3 | | 6560 | 855
851 | 7417 | 7260
6777 | 7150
6662 | 1206 | 1602
1584 | 1465
1467 | 4.985 | 8286
8334 | | 40.65 | 30.03 | 40.10 | EK.00 | 1768 | 75.2 | 3.2 | 4 | | 6871 | 860 | 7627 | 7492 | 7341 | 1486 | 1620 | 11476 | 5.115 | 8040 | .640 | 41.03
37.51 | 41.00
36.90
37.07 | 87.30 | 51.39 | 1487
2108 | 74.5
77.5 | 3.2
13.1 | 5 | | 6707
6602 | 851
850 | 7465
7373 | 7329
7234 | 7184
7095 | 1352 | 1597
1603 | 1458 | 5.061
4.952 | 8054
8056 | .642 | | | | | | 77.4 | 13.1 | 8 | | 6230
5571 | 835
832 | 7054
6488 | 6907
6324 | 6779
6213 | 1186 | 1583 | 1462 | 4.744 | 8079 | -643 | 38.51 | 38.37
38.40
35.77
36.09
36.25 | 38.74 | 53.26 | 1713 | 76.7 | 13.1 | 9 | | 6523 | 835 | 7240 | 7111 | 6969 | 1014 | 1555
1602 | 1456 | 4.369 | 8032
7865 | .626 | 57.68
36.37 | 55.77 | 36.18 | 49.76 | 1443
2041 | 74.4 | 13.1 | 끪 | | 6467
6336 | 832
833 | 7199 | 7066
6947 | 5925
5815 | 1391 | 1598
1591 | 1469 | 4.845 | 7878
7849 | .627
.625 | 36.59
35.95 | 36.09 | 36.50 | 50.82 | 1987 | 78.5 | 15.9
15.9 | 18 | | 5925 | 822 | 6713 | 6572 | 6450 | 1160 | 1570 | 1460 | 4.521 | 7857 | .625 | 01.00 | 01.00 | 01.32 | 0T.05 | TOOT | 77.2 | 13.9 | 14 | | 5355
6132 | 806
821 | 6250
6809 | 6088
6688 | 5985
6557 | 960
1416 | 1543
1585 | 1451 | 4.226 | 7895
7643 | .628
.608 | 37.19
34.07 | 38.06
34.12 | 38.42
34.52 | 52.97
47.53 | 1390
1982 | 75.3 | 13.9 | 15 | | 6054
5949 | 817
820 | 6738
6652 | 6615
6527 | 6484
6399 | 1374 | 1575 | 1462 | | 7643 | .60B | 34.06 | 34.22 | 34.62 | 47.92 | 1932 | 79.2 | 14.6 | 17 | | 5577 | 816 | 6317 | 6185 | 6072 | 1313
1166 | 1562
1564 | 1472
1459 | 4.251 | 7621
7599 | | 35.06 | 34.57
35.04 | 35.41 | 48.12
49.15 | 1840 | 78.5
77.5 | 14.6 | 18 | | 5146
5746 | 797 | 5996
6392 | 5845
6278 | 5742
6155 | 978
1358 | 1546
1567 | 1460
1467 | 4.032 | 7643
7414 | .608
.590 | 35.81
32.45 | 36.36
32.83 | 36.71 | 50.62 | 1363 | 78.5 | 14.6 | 20
21 | | 5683 | 805 | 6339 | 6222 | 6101 | 1322 | 1565 | 1465 | 4.257 | 7414 | .590 | 32.93 | 35.34 | 33.75 | 46.58 | 1829 | 79.1 | 14.8 | 22 | | 5603
5341 | 799 | 6279
6058 | 6158
5928 | 6043
5818 | 1249
1134 | 1559
1557 | 1460
1459 | 4.228 | 7443
7456 | .592 | 35.53
35.25 | 33.74
34.16 | 54.14
54.53 | 47.10 | 1752 | 78.7
78.3 | 14.8 | 23 | | 4881
5068 | 788
773 | 5671
5645 | 5530
5543 | 5435
5437 | 989
1298 | 1526 | 1448 | 5.845 | 7407 | -590 | 55.59 | 34.40 | 34.78 | 48.52 | 1377 | 77.1 | 14.8 | 25 | | 5075 | 778 | 5671 | 5565 | 5474 | 1284 | 1541
1550 | 1456 | 3.798 | 7002
5996 | .557
.557 | 30.71
31.38 | 30.12
30.76 | 30.41 | 48.12
49.15
50.62
45.88
46.58
47.10
47.55
48.52
42.08
42.90 | 1786
1715 | 79.9 | 17.6
17.6 | 27 | | 4919
4803 | 766
764 | 5531
5468 | 5425
5352 | 5325
5254 | 1192
1106 | 1546
1535 | 1457 | 5.712
5.662 | 7002 | .557
.558 | 32.79
31.28 | 30.82
31.64 | | 42.92
43.90 | 1626
1515 | 80.2
79.3 | 17.6
17.6 | 28 | | 4504 | 754 | 5225 | 5097 | 5007 | 880 | 1527 | 1455 | 3.512 | 7023 | .559 | 32.84 | | 32.22 | 44.43 | 1366 | 78.3 | 17.6 | 30 | | 5125 | 844
839 | 5673
5620 | 5575
5532 | 5455
5407 | 1559
1461 | 1101 | 983
989 | 5.715 | 8542
8542 | | 27.14
27.58 | 26.81 | 27.10 | 54.12 | 2544 | 75.2 | 19.6 | 31 | | 4953 | 834 | 5531 | 5442 | 5316 | 1389 | 1102 | 991 | 5.520 | 8550 | .681 | 27.75 | 27.47 | 27.74 | 54.54
54.86 | 2246 | 75.5
75.1 | 19.6 | 32
33 | | 4544 | 827
812 | 5222
4788 | 5119
4678 | 5017
4587 | 1252 | 1079 | 980
977 | 51254
4.798 | 8550
8558 | .681 | | 27.41
27.74 | 27.67 | 55.16
55.47 | 1943 | 73.7
71.3 | 19.6 | 34
35 | | 4952 | 827 | 5460 | 5368 | 5251 | 1479 | 1095 | 986 | 5.482 | 8329 | .663 | 26.75 | 26.32 | 26.59 | 52.93 | 2254 | 76.4 | 20.2 | 36 | | 4861
4735 | 821
819 | 5398
5280 | 5303
5184 | 5189
5080 | 1345 | 1098
1092 | 981 | 5.362 | 8321
8321 | .662
.662 | | 26.63
26.78 | 27.04 | 53.24
53.57 | 2167 | 76.9
76.3 | 20.2 | 37
38 | | 4730
4428 | 813
807 | 5277 | 5179
4906 | 5075
4808 | 1309
1175 | 1086 | 985 | 5.288 | 8360
8345 | .665 | 27.45 | 27.10 | 27.36 | 54.16 | 2037 | 76.1 | 20.2 | 39 | | 3986 | 793 | 4623 | 4513 | 4431 | 989 | 1064 | 977 | 4.623 | 8360 | .665 | 20 37 | 27.22
27.57 | 27 70 | E4 00 | 1826
1547 | 74.9
72.4 | 20.2 | 40 | | 4679
4598 | 809
812 | 5176
5105 | 5088
5015 | 4985
4915 | 1427
1584 | 1084 | 984
993 | 5.080 | 8116
8070 | .646
.642 | 26.06
26.07 | 25.56 | 25.82 | 51.40 | 2177 | 77.2
77.0 | 20.9 | 42 | | 4595 | 804 | 5106 | 5016 | 4913 | 1362 | 1078 | 983 | 5.132 | 8116 | .646 | 25.94 | 25.78 | 26.02 | 52.16 | 2085 | 77.5 | 20.9 | 44 | | 4532
4242 | 802
793 . | 5058
4800 | 4969
4704 | 4870
4512 | 1305
1172 | 1082
1057 | 989 | 5.043
4.839 | 8108
8123 | | 26.21
25.84 | 25.56
25.61
25.78
26.11
26.22 | 26.35 | 52.16
52.83 | 1997
1802 | 77.3
76.1 | 20.9 | 45 | | 3846
4428 | 781
789 | 4464
4887 | 4359
4805 | 4280
4704 | 979
1405 | 1051 | 971
984 | 4.491 | 8123
7917 | .647 | E1.00 | 40.00 | A W | 04.02 | 1510 | 74.3 | 20.9 | 47 | | 4351 | 785 | 4825 | 4741 | 4648 | 1564 | 1064 | 977 | 4.874 | 7932 | .631 | 24.65 | 24.50 | 24.73 | 49.34 | 2131
2083 | 77.5
77.1 | 21.5
21.5 | 48
49 | | 4325
4038 | 780
776 | 4811
4555 | 4727
4462 | 4633
4378 | 1288
1167 | 1068 | 983 | | 7954
7917 | | 25.08 | 25.09 | 25,32 | 50.05 | 1984
1786 | 76.9 | 21.5
21.5 | 50 | | 3681 | 761 | 4251 | 4169 | 4095 | 961 | 1044 | 978
| 4.264 | 7932 | .631 | 26.30 | 26.07 | 26.27 | 52.05 | 1477 | 76.4
74.8 | 21.5 | 51
52 | | 4144 | 772
773 | 4591
4519 | 4514 | 4423
4353 | 1377
1392 | 1059 | 980 | | 7702
7688 | .613 | 25.60
25.00 | 25.55 | 23.54 | 46.88 | 2070 | 77.7
77.4 | 22.0 | 53
54 | | 4056 | 775 | 4502 | 4417 | 4330 | 1364 | 1052 | 975 | | 7666 | 510 | 23.27 | 22,98 | 23, 19 | 46.58 | 2028 | 77.7 | 22.0 | 55 | | TABLE I | - | PERFORMANCE | DATA | OF | PYTHON | TURBINE- | -PROPELLER | |---------|---|-------------|------|----|--------|----------|------------| |---------|---|-------------|------|----|--------|----------|------------| | [| | | Γ | 1 | _ | | | | | 1 | | : | | | | | | | ·· - · · | | | 7 | | | |----------|--------------|----------|-----------------|-------------|--------------|-------------|------------|------------|---------------|------------|------------|---------------|------------|--------------|--------------|--------------|--------------|--------------|---------------------|--------------|-------|--------------|--------------|----| | | | 1 . | | J. | | | Cow | 1 1n | $\overline{}$ | 1 | | | | | | | | | - | | | | | | | | | 1 Od | | 1. | | | • | 2 | 4 | Į. | | | | | | | | | | | | | | Í | | | | 25 | * | 104, | 2 | • | 1 | - | ē- | 1 | c. | mpres | 80P-7 | otor- | atage | stat | ic pr | osaur | e. (1 | .b/so | ft al | os.) | | | | 1 1 | | F 7 | å, | 티 | horsepowe | H 20 | erat | abs. | aba. | | • | ALL U | | 0.01 | | | ,. | | | , | | | | 1 | | | | # 🔅 | 2 | fuel | 2 | 10.4 | di di | 0 4 | 1 |] | | | | | | | | | • | | | | | | | 1 1 | eg
eg | 발표
기계 | | | å | | 472 | 툂 | | | | | | | 4 | | | <u> </u> | | | | | | | |] _ [| # C | , , | A P | à à | 3 | 0 7 1 | 7 | | 35 | | | | | | | Btag | 8 | | | | | | E | , | | E E | Alts
(ft) | Coar | Engine
(rpm) | 188 | Shad of | | Total | | (Lb) | 1, | 8 | 5 | 4, | 5 | 6 | . 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | | 58
57 | 20,000 | 1.026 | 7205 | 1225 | 1246
1134 | 963
971 | 458
455 | 988 | 966 | 837
832 | 971
966 | 1119 | 1274 | 1429 | 1619
1600 | 1837 | 2083
2064 | 2344
2332 | 2625
2599 | 2935
2916 | === | 3583
3585 | 3872
3881 | ļ | | 58 | 1 | 1.026 | | 925
645 | 773 | 972 | 456 | 997 | 978 | 813 | 954 | 1095 | 1243 | 1390 | 1575 | 1778 | 2017 | 2263 | 2531 | 2827 | | 5439 | 3700 | ĺ | | 59 | | 1.025 | 6805 | 940 | 249
816 | 985 | 454 | 1989 | | 788 | 929 | 1070 | 1203 | 1337
1398 | | 1696 | 1914 | 2140
2201 | 2586
2435 | 2701
2675 | | 3817
3236 | 3428 | ı | | 61 | ` ' | 1.028 | 1000 | 875 | 720 | 967 | 454 | 994 | 973 | 851 | 985 | 1118 | 1253 | 1386 | 1565 | 1738 | 1957 | 2169 | 2414 | 2629 | | 5205 | 3407 | ĺ | | 62
63 | | 1.025 | | 900
595 | 582
255 | | 455 | 990 | | 848 | 969 | | 1243 | 1376
1356 | | 1714 | | 2144 | 2369
2321 | 2574
2259 | | 5136
3046 | 3355
3201 | ŀ | | 64 | 50,000 | 1.025 | 8006 | 1265 | 1576 | 626 | 437 | 645 | | 472 | 528 | 641 | 754 | 873 | 1035 | 1218 | | | 1944 | 2239 | | 2901 | 5285 | t | | 65 | | 1.027 | 1 | 1170 | 1303 | 626 | 488 | 643 | | 465 | | 634 | 747 | 866 | | 1197 | | | 1901 | 2204 | | 2888 | | i | | 66 | | 1.027 | | 1085 | 1173
669 | | 487
436 | 645 | | 467 | 525 | 629
608 | 735
714 | 854
819 | 1002
960 | 1171
1115 | | 1615
1530 | 1861
1755 | 2150 | | 2783
2643 | | ! | | 68 | | 1.026 | ŧ | 575 | 266 | 621 | 436 | 637 | 617 | 450 | 498 | 584 | 682 | 781 | 894 | 1027 | 1203 | 1400 | 1598 | 1844 | | 2565 | 2604 | | | 70 | • | 1.026 | 7806 | 1160 | 1287
1215 | | 458
458 | 645 | 623 | | | 669
648 | 782
761 | 902
660 | 1056 | 1232 | 1457 | 1669° | 1901 | 2162 | | 2795
2774 | 3084 | į | | 71 | | 1.027 | ĺ . | 983 | 1077 | 625 | 487 | 642 | 623 | | 536 | 655 | 754 | 875 | 1,014 | 1190 | 1880 | 1806 | 1858 | 8118 | | 2711 | 2992 | | | 72 | | 1.027 | } | 815 | 773 | 625 | 487 | 640 | | 471 | 527 | 655 | 752 | 844 | 271 | 1126 | 1816 | 1597 | 1745 | 2013 | | | 2857 | l | | 78 | | 1.027 | 7606. | 570
1050 | 336
1173 | 619
624 | 436
439 | 636 | 616
623 | | 569 | 624 | 716
794 | 614
914 | 934
1054 | 1068
1230 | 1257
1428 | 1427
1639 | 1624
1864 | 1856
2125 | | 2565
2695 | 255 | ĺ | | 75 | | 1.024 |] | 1020 | 1114 | 630 | 488 | 645 | 627 | 496 | 574 | 679 | 792 | 905 | 1045 | 1214 | 1419 | 1650 | 1848 | 2123 | | 2695 | | 1 | | 76 | j | 1.025 | 1 | 774 | 1016 | | 444 | 639 | | 495 | 575 | 678
660 | 784
759 | 897 | 1037 | 1192 | 1389
1322 | 1586
1512 | 1805
1723 | 2058
1956 | | 2593
2470 | | | | 78 | | 1.026 | | 540 | 278 | 618 | 457 | 634 | | | | 637 | 722 | 820 | | 1067 | 1236 | 1412 | 1602 | 1820 | | 2352 | 2489 | - | | 79 | | 1.025 | 7406 | 960 | 1052 | | 437 | 644 | | | | . 706 | 805 | 918 | | 1820 | 1403 | | 1012 | | | 2566 | 2811 | ĺ | | 80 | | 1.027 | İ | 910
845 | 995 | 626
625 | 437 | 643 | 624 | 515 | 586
576 | 705
690 | 804
789 | 917 | 1028 | 1198 | | 1871 | 1776
1760 | 2008 | | 2522
2495 | 2732 | | | 82 | | 1.027 | | 720 | 664 | 626 | 488 | 643 | 625 | 502 | 580 | 685 | 777 | 882 | 1002 | 1157 | 1386 | 1509 | 1699 | 1931 | | 2403 | 2621 | l | | 85
84 | | 1.027 | 7205 | 525
840 | 302 | 623
626 | 487 | 640 | 622
627 | | 868 | 663
913 | 755 | 853
917 | 966
1045 | 1100
1184 | | 1431
1543 | 1614 | 1825
1952 | | 2275
2425 | 2641 | • | | 85 | | 1.026 | 1208 | 805 | | 626 | 435 | 642 | 628 | | | 705 | 811 | 910 | 1043 | | 1367 | 1543 | 1740 | 1959 | | 2430 | 2541 | ĺ | | 86 | | 1.027 | } | 765 | | 625 | 455 | 842 | | 515 | | 898 | 797 | 905 | | 1110 | | | 1712 | 1930 | | 2388 | 5609 | 1 | | 87
88 | | 1.027 | | 665
500 | 573
288 | | 456
456 | 640 | | 507 | 585
579 | 690
684 | 775
789 | 880
860 | 973 | 1141 | 1303
1255 | | 1662
1665 | 1875 | | 2517
2184 | 2514
2553 | Í | | 89 | } | 1.027 | 8805 | 670 | 580 | 683 | 441 | 640 | 627 | 550 | 620 | 719 | 803 | 895 | 1000 | 1127 | 1275 | 1430 | 1592 | 1768 | | 2141 | 2317 | 1 | | 90 | | 1.026 | | 658 | 551 | 624 | 436 | 640 | 627 | | | 719 | 803
ELO | 888
887 | 1000 | 1127 | 1275 | 1423 | 1584
1577 | 1760
1760 | | 2184 | 2503
2503 | 1 | | 91
92 | | 1.027 | | 595
525 | 481
565 | 630
624 | 440 | 647
641 | 653
627 | 550
558 | 654
615 | 706 | 791 | 875 | 988 | 1101 | 1242 | 1382 | 1544 | 1720 | | 2079 | 2827 | | | 95 | | 1.025 | 1 | 472 | 262 | 629 | 439 | 645 | 651 | 543 | 620 | 704 | 789 | 875 | 979 | 1092 | 1232 | 1380 | 1828 | 1897 | | 2049 | 2190 | ١. | | 94 | | 1.025 | 8006 | 755 | | 396
396 | 441 | 406 | 394 | 291 | 528
527 | 391
411 | 475
482 | 553
552 | 644
645 | 757 | 891
883 | 1039 | 1194
1178 | 1370
1362 | | 1771
1742 | 1868 | 1 | | 96 | | 1.028 | ì | 660 | 671 | 392 | 441 | 403 | 391 | 288 | 331 | 401 | 464 | 535 | 626 | 725 | 852 | 999 | 1147 | 1323 | | 1703 | 1,894 | 1 | | 97 | | 1.026 | i | 560 | 507 | 390 | 439 | 400 | 569
567 | | | 587
580 | 457
436 | 521
493 | 598
570 | 697
647 | 909
753 | 943
873 | 1084 | 1253 | | 1612
1492 | 1788 | ĺ | | 98 | , | 1.025 | 7806 | 700 | 252
745 | 389
397 | 446
434 | 399
407 | 397 | 508 | | 399 | 484 | 561 | 652 | 758 | 885 | 1026 | 1175 | 1549 | | 1708 | 1899 | (| | 100 | | 1.025 | 1 | 670 | 699 | 394 | 456 | 404 | 398 | 505 | 833 | 596 | 481 | 551 | 642 | 748 | 875 | 1009 | 1149 | 1518 | | 1684 | 1860 | ŀ | | 101 | | 1.020 |] | 650
400 | 632
237 | 391
395 | 457
458 | 399
404 | 388
393 | | | 385
399 | 485 | 541
512 | 625
596 | 731
674 | 851
772 | 984
892 | 1019 | 1294
1166 | | 1660
1490 | 1645 | 1 | | 103 | | 1.028 | 7806 | 620 | 626 | 391 | 458 | 402 | 391 | 316 | 351 | 414 | 492 | 562 | 639 | 745 | 885 | 991 | 1125 | 1280 | | 1618 | 1787 | į | | 104 | | 1.030 | 1 | 590 | 593 | 394 | 438 | 406 | 395 | | | 418
401 | 489 | 552 | 656 | 735
711 | 848 | 974
950 | 1108
1077 | 1270
1239 | | 1801
1563 | 1765
1726 | ł | | 105 | | 1.028 | 1 | 550
490 | | 391 | 442 | 408 | 391
397 | 503 | 358
552 | 415 | 486 | 535
542 | 619
626 | 711 | 825 | 945 | 1077 | 1225 | | 1549 | 1703 | l | | 107 | [| 1.026 | -[| 400 | 255 | \$90 | 439 | 400 | 389 | 295 | 558 | 401 | 464 | 521 | 591 | 678 | 774 | 887 | 1007 | 1147 | | 1450 | 1891 | | | 108 | | 1.028 | 7406 | 520
470 | 491 | 594
595 | 442 | 405 | | 313 | 369
362 | 432
418 | 496
482 | 559
545 | 636
622 | 721 | 878 | 946
918 | 1066 | 1800
1178 | | 1502 | 1645 | į | | 109 | | 1.028 | ŀ | 390 | | 595 | 444 | 405 | 394 | | 377 | 426 | 483 | 539 | 616 | 687 | 785 | 891 | 1003 | 1157 | | 1418 | 1846 | ĺ | ENGINE WITH STANDARD TAIL-PIPE CONFIGURATION - CONCLUDED | | | | | | | _ | | | | | | | | | | | _ | | |---|--|--|--|--
--|--|---|---|--|--|---|---|---|---|---|--|--
--| | | Compr | essor | | | , | fail ; | ipe | | · · · · | | | | | Corre | cted | | , I | | | Outlet straightening-
ware static pressure
(1b/sq ft abs.) | Outlet total temper-
ature, Tg (OR) | Outlet total
pressure, Pg
(1b/sq ft abs.) | Outlet statio
pressure, pg
(lb/sq ft abs.) | Turbine-inlet total
pressure, Ps
(1b/sq ft abs.) | Total temperature,
T ₅ (^o R) | Total pressure, P5 (1b/sq ft abs.) | Static pressure, ps (1b/sq ft abs.) | Compressor pressure
ratio, Pg/Pl | Corrected engine speeds N//61 (rpm) | Compressor Mach
number, Mo | Tail-pipe air flow,
Wa,5 (lb/sec) | Turbine-inlet air
flow, Wa,5 (lb/sec) | Cowl-inlet air flow,
Wa,l (lb/aec) | Wa, 1 /61/51 (15/mes) | Furbine-inlet total temperature, 73/9 | Compressor effici-
ency, 4 _G (percent) | Average engine running time in altitude wind tunnel (hr) | Run | | 4048
4050
5812
3477
5580
5580
5583
3201
3283
3283
3283
3283
3283
3283
3283
328 | 775
7699
7644
7653
7366
7326
831
827
823
831
844
799
800
795
800
795
767
774
772
774
775
775
775
775
775
775
775
775
775 | 4482
4515
44515
44515
44515
3986
5928
5708
5715
5617
3617
3617
3617
3617
3617
3617
3617
3 | 4408
4435
4435
4230
3959
3916
3852
3767
3625
3763
3586
3586
3586
3586
3586
3586
3586
35 | 4518
4546
4149
3865
3791
3557
3557
3574
3508
3087
32418
2357
32418
2358
3359
32418
2858
3359
32418
2858
3359
32418
2858
2858
2858
2865
2865
2865
2865
286 | 1356
1296
1145
973
1159
1159
1159
1159
1208
1159
1262
1262
1340
127
121
121
1340
121
121
1340
121
1340
121
1340
121
1340
121
1340
121
1340
121
1340
121
1340
121
1340
121
1340
121
121
1340
121
1340
121
1340
121
121
121
121
121
121
121
121
121
12 | 1050
1058
1047
1039
1032
1031
1026
718
718
719
703
694
770
770
770
770
676
677
678
687
687
687
687
688
684
675
688
688
688
688
688
688
688
688
688
68 | 974
9819
979
970
973
980
975
975
638
636
638
636
638
631
632
632
632
632
632
632
632
632
632
632 | 4.536
4.527
4.331
4.078
3.986
3.985
3.727
5.883
3.727
5.429
4.928
5.603
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
5.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429
6.429 | 7886 7695 7688 77092 77688 77268 77268 77268 77268 8727 8719 8755 8755 8755 8755 8755 8755 8755 875 | 0.610.616.616.616.616.616.616.616.616.61 | 25.24
25.85
24.50
22.85
25.35
17.80
17.80
17.80
17.82
17.72
17.72
17.72
17.72
17.73
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
11.88
17.85
11.88
17.85
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.88
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89
11.89 | 25.01
28.72
24.61
24.61
22.06
22.06
22.16
23.98
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
17.85
18.95
18.95
10.99
11.95
11.95
11.95
11.95 | 25.22
23.95
24.35
24.35
22.35
22.35
25.16
18.02
18.01
18.08
18.33
18.12
17.46
17.90
17.40
17.90
17.40
17.59
16.12
17.39
16.12
17.39
16.52
16.68
16.68
16.72
16.55
16.68
16.72
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10
11.10 |
46.75
47.55
49.63
49.63
44.88
46.04
54.42
74.58
46.04
55.21
55.21
55.21
55.22
55.23
55.23
55.23
55.23
55.23
55.23
55.23
55.24
49.80
55.24
49.80
55.24
49.80
55.24
49.80
55.24
55.25
55.35
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36
55.36 | 2016
1952
1470
1728
1470
1728
1430
1632
1430
22468
2576
2468
2400
2299
2214
1700
2278
2216
1622
2214
2214
2214
2214
2214
2214 | 77.5
77.7
77.7
78.0
78.0
78.0
78.0
78.0
78.0 | 22.000.05.5.5.5.2.2.2.2.2.2.2.2.2.2.2.2. | 56
57
58
59
60
61
62
65
65
66
67
76
77
77
80
81
82
83
84
85
86
87
77
77
88
81
82
83
84
86
86
86
86
86
86
86
86
86
86
86
86
86 | | 1732
2011
1973
1942
1760
1871
1861
1916
1788
1554
1728
1678
1678 | 813
814
812
809
797
802
799
800
791
783
776
773
772 | 1995
2233
2196
2171
1975
2095
2077
2036
2019
1901
1934
1889
1836 | 1952
2195
2155
2155
2156
1934
2061
2042
2000
1983
1862
1900
1861
1801 | 1908
2152
2115
2087
1890
2013
1998
1956
1957
1820
1857
1816
1763 | 1181
1470
1425
1365
1120
1415
1361
1308
1243
1151
1310
1251
1122 | 425
446
441
435
430
438
438
423
431
430
424 | 391
402
399
395
397
395
395
401
392
597
396 | 5.000
5.486
5.456
5.441
4.889
5.211
5.116
5.065
4.949
4.753
4.775
4.676 | 8638
8540
8516
8509
8501
8283
8283
8245
8245
8245
8268
8028
8006 | .688
.690
.678
.677
.677
.659
.658
.658 | 10.85
10.83
10.72
10.80
10.73
10.45
10.74
10.47
10.85
10.89
10.07 | 11.08
10.81
10.77
10.89
11.03
10.38
10.48
10.48
10.68
10.57
10.02 | 11.17
10.98
10.88
10.98
11.13
10.48
10.59
10.58
10.78 | 54.90
51.94
52.24
53.53
50.66
50.68
51.38
51.38
51.93
48.63
49.05 | 1768
8363
8290
2197
1792
2238
2174
8071
1974
1795
2046
1957 | 70.6
71.1
71.7
72.6
69.5
72.0
71.6
72.3
71.1
74.1
73.6
72.6 | 31.6
50.4
50.4
50.4
52.0
52.0
52.0
52.0
52.0
52.0
52.8
58.8 | 98
99
100
101
102
103
104
105
106
107
108
109
110 | TABLE II - PERFORMANCE DETERIORATION DATA FOR FYTHON | | | | | | | | | | | | | | | PP 11 | | | | | | | | | | | | |-----|--------|--------------------------------------|------------|------------------|--------------|--|-------------|---------------------------------|------------------|------------|--------------|-------|------------|------------|--------------|------------|-------------|-------------------|--------------|--------------|-------------|-------------|--------------|---------------|--------| | | | " pres- | H | flow, Wg | Wer, | - | • | r imi | E. 77 | | Com | press | or-r | otor- | stage | stati | o pre | ssure | , (11 |)/sq 1 | t aba |) | | | 202 | | | epart: | fulet ran
ratio, P ₁ / | , peeds ec | fuel | t horsepow | Tunnel statio
pressure, po
(1b.sq ft abs.) | L tempera | Total pressur
(lb/sq ft abs. | 11 | | | | · · · · · | · | | | - | | | , | | | | | · · | | 2 | (Ft.) | Com! | Engin | Inglas
(1b/hr | Shaft | D. C | 9 - | 8.2 | Statio
(1b/eq | <u> </u> | - | 3 | | - | - | Stag | 68 | - | 130 | 11 | 12 | 1,5 | 174 | | | | - | | | Д. | | 1 47 47 | 100 | - | Aver | | ngine | Mini | | line: | 8.0 | HFB. | | | 1 - | 10 | 1 24 | 12 | 1.5 | 14 | | | | 1 | 10,000 | 1.087 | 8006 | 8580 | 2589 | 1486 | 618 | _ | | | | | | | 2388 | 9652 | 3081 | 3539 | 4038 | 4644 | 5228 | 5968 | 6606 | | | | 3 | , | 1.027 | | 2100 | 2246
1851 | 1455 | 518 | 1492 | 1447 | 1140 | 1316 | 1549 | 1760 | 1992 | 2261
2253 | 2591 | 5006 | 3435 | 3914 | 4477 | 5047 | 5759 | 6378 | | | | 4 | | 1.026 | | 1560 | 1328 | 1460 | 522 | 1498 | 1454 | 1137 | 1250 | 1538 | 1748 | 1961 | 2221 | 2510 | 2876 | 3284 | 3693 | 4228 | 4748 | 5398 | 5924 | | 5. A## | | | | | | | 10000 | | | | | runn fr | | | | | | | 1-2 | 20 | | T | | 10000 | 1-7-4 | 115.28 | | | 5 6 | 10,000 | 1.027 | 8006 | 8100 | 2510
2195 | 1447 | 514 | 1498 | | 1149 | 1332 | 1572 | 1763 | 2008 | 2549
2290 | 2593 | 2894 | 3425 | 13881 | 4485 | 8007 | 5718 | 6324 | · | - | | 7 8 | | 1.027 | | 1870 | 1831 | 1455 | 525 | 1494 | 1449 | 1151 | 1334 | 1557 | 1771 | 11996 | 2264
2197 | 2559 | 2939 | 3355 | 3798 | 4347 | 4883 | 8572 | 6250 | | | | 9 | | 1.026 | | | 1574
595 | 1459 | 510 | | | | 1288 | 1513 | 1708 | 1908 | 2154 | 2414 | 2759 | 2140 | 3534 | 4041 | 4505 | 5132 | 5625 | | . • | | | | | | | | | | | | ngine | | | | | | | | 1-1- | | | | | | | | | 10 | 10,000 | 1.025 | | | 2488
2118 | | | | | | | | | | 2592
2528 | | | | | | | | 6418 | | | | 11 | | 1.026 | 1 | 1600 | 1363 | 1452 | 520 | 1490 | 3447 | 1150 | 1333 | 1566 | 1770 | 1981 | 8249 | 2537 | 2910 | 5298 | 3713 | 4220 | ! | 5339 | 5860 | [| | | 13 | | 1.026 | | 1100 | 349 | 1458 | 517 | | | ngine | | | | | 2196 | 2407 | FROE | oros | 3838 | 14019 | | 4448 | 3446 | | | | 14 | 10,000 | 1.026 | 8006 | | 2039 | | | 11488 | 1448 | 1181 | 1599 | 1.624 | 11856 | 12103 | 2408 | 2757 | 3166 | 2605 | 4053 | 4574 |] | 5665 | 6165 | · · | | | 15 | - | 1.028 | l | 1810 | 1376 | 1456 | | 1484 | 1447 | 1175 | 1351
1351 | 1598 | 1795 | 2070 | 2359 | 2590 | 2971 | 3485
3551 | 3921
3746 | 4210 | | 5153 | 5498 | 1 | | | | | | | | | | <u> </u> | AV61 | ago i | ngine | run | ning | time, | 4.5 | hrs. | | · | | | | | | | | | | 17 | 20,000 | 1.028 | 8005 | 1730 | 1922 | 975 | 451 | 1009 | 970
965 | 728 | 812 | | 1129 | | 1498 | 1734 | | | | | | | | İ | | | 19 | | 1.028 | | 1475 | 1556 | 969 | 450 | 996 | 964 | 723 | 800 | 955 | 1105 | 1251 | 1448 | 1666 | 1955 | 2978 | 2630 | 3067 | 3503 | 4067 | 4566 | 1 | | | 20 | | 1.027 | 1 | 1265 | 1146 | 969 | | 995 | 962
963 | 725
715 | 786
769 | 917 | 1082 | | 1406
1353 | | 1769 | 2043 | 8225 | 2712 | 3085 | 3585 | 5986 | ĺ | _ | | | | | | | <u> </u> | | | YASI | | ngin | | ning | time, | 9.5 | hra. | | | , ,, - | · | | | | ,: | İ | | | 88 | 30,000 | 1.029 | 8006 | 1230 | | 625 | 441 | 648 | 622
627 | 471 | 527
526 | | 738
724 | 844
829 | 978
963 | 1125 | 1544 | 1583 | 1630 | 2096 | 2500 | 2823 | 3175 | | | | 24 | | 1.027 | | 1045 | 1107 | 624 | 441 | 641 | 621 | 487 | 526
506 | 605 | 711 | 802 | 929 | 1077 | 1274 | 1492 | 1731 | 5050 | 2316 | 2689 | 3034 | | | | 25 | | 1.029 | Ì | 870
610 | 824
506 | 625
629 | 443 | 641 | 626 | 457
465 | 506
495 | | 696
676 | 781
768 | 900
866 | | | | | 1914 | | | | | | | | | | | | | | | | | ngine | | | time, | 10.1 | hrs. | | | | | | | | 7 2.1 | | | | 27 | 40,000 | 1.026 | 8006 | 745 | 768
746 |
390
387 | | 400
597 | 388
385 | 285 | 321
553 | | 454
452 | 511
516 | 600 | 694
692 | 820
81.B | | | 1290 | | | 1926 | | | | 29 | | 1.028 | | 865 | 678 | 386 | 439 | 397 | 584
586 | 289 | 325 | 368 | 444 | 508 | 585 | 677 | 798 | 937 | 1078 | 1254 | 1444 | 1662 | 1886 | | | | 30 | | 1.028 | | 570
450 | 526 | 387
396 | 440 | 598
407 | 386
398 | 291 | 327
525 | | 439 | 495 | 873
862 | 658 | 763
738 | 897
865 | | 1200
1155 | | | 1784
1695 | | | | | | | Ь. | | | | | | | | <u> </u> | - | - | **** | | 1 | | | | - | | | | · | | | | ompre | ssor | | | Ta | 11 pi | P. B. | 1 | | | 1 | İ | | Corre | cted | | 1 1 | |-------------------------------------|--|---|--|--|--------------------------------------|--------------------------------------|--|---|--|-------------------------------|---|---|---------------------------------------|--|--|--|----------------------------| | straighte
tatio pres
ft abs.) | Outlet total temper-
ature, T2 (OR) | Outlet total
pressure, Pg
(lb/sq ft abs.) | Outlet statio
pressure, pg
(lb/sq.ft abs.) | Turbine-inlet total pressure, P5 (1b/sq ft abs.) | Total temperature,
To (OR) | Total pressure, P5 (1b/sq ft abs.) | Static pressure, pg (lb/sq ft abs.) | Compressor pressure
ratio, Pg/Pl | Corrected engine
speed, W//Gl (rps) | Compressor Mach
number, Mo | Wash (1b/sec) | Turbine-inlet air
flow, Wa,3 (lb/sec) | Cowl-inlet air flow,
Ma,1 (lb/sec) | Cowl-injot air flow,
Ma,1 /61/61 (lb/sec) | Turbine-inlet total
temperature, T3/9
(OR) | Compressor effici-
ency, Mg (percent) | Run | | | | | | | Ave | rage | engi | e run | ing t | ime, a | 0 hrs | | | | | | | | 6786 S | 911
902
899
898 | 7798
7556
7363
7066 | 7657
7427
7217
6916 | 7509
7275
7086
6795 | 1439
1244
1252 | 1616
1607
1594 | 1475
1476
1474 | 5.064
4.919
4.717 | 8014
7998
7983 | .637
.635 | 37.65
37.79
37.30 | 37.50
37.38 | 37.48
37.87 | 53.56 | 2056
1940
1803
1674 | 78.0
78.7
78.2
76.6 | 1
2
5
4 | | 4000 1 | 55A I | 7651 | 7516 | 7357 | | rage | | 10 Fun | | | .5 hrs | | TO 08 | 100 00 | 20000 | 97. 0 | | | 6725
6523
6259 | 908
901
906
895
873 | 7497
7313
7075
6780 | 7358
7172
6926
6621 | 7815
7038
6801
6503 | 1448
1374
1258 | 1627
1608
1603
1585
1580 | 1489
1474
1464 | 5.048
4.895
4.755 | 8022
8046
7960
7998
8078 | .641
.654
.637 | 37.25
36.93
37.32 | 36.22
36.72
36.84
37.31
38.39 | 37.11
37.22
37.67 | 51.65
52.62
53.01
53.62
54.25 | 1957
1825
1692 | 77.8
77.8
78.0
76.9
75.0 | 5
6
7
8
9 | | | | | | | Ave | rage | engi | tuni | ning t | ime,] | 6.1 hr | · . | | | | | | | 6608 | 911
897
891
875 | 7542
7366
6977
6537 | 7412
7232
6838
6377 | 7261
7090
6712
6264 | 1453
1284
1084 | 1610
1685
1668 | 1488
1478
1464
1466 | 5.018 | 7976
8022
7998
8022 | .635
.639
.637
.639 | 35.98
36.58
36.82
37.28 | 35.58
36.11
36.57
37.47 | 35.50 | 50.85
51.51
52.51
53.36 | 1944 | 77.8
77.6
76.9
74.8 | 10
11
12
13 | | 5445 | 904 | 7210 | 7075 | 6932 | 1476 | | | | 7991 | | 35.81 | | 35.46 | 50.52 | 1954 | 76.5 | 14 | | 6118 | 894
681 | 6934
5477 | 6789
6324 | 6658
6208 | 1505
1127 | 1586
1561 | 1467 | 4.641 | 7998
8006 | .637 | 36.36 | | 36.38 | 51.57
52.12 | 1738 | 75.7
74.0 | 15
16 | | <u></u> | | | <u> </u> | | | rage | | e runı | | | .5 hrs | | | , | | | ,_] | | 5052
4911
4679 | 837
829
825
819
808 | 5725
5613
5480
5260
4871 | 5619
5509
5375
5152
4758 | 5505
5404
5272
5059
4575 | 1404
1314
1221 | 1114
1104
1094
1079
1066 | 987
985
982
976 | 5.630
5.502
5.266
4,895 | 8590
8606
8598
8598
8590 | .685
.685
.684 | 28.27
28.43
28.41
27.80
29.00 | 27.76
28.00
27.95
28.21 | 28.01
28.24
28.19 | 55.29
55.85
55.83
56.36 | 2203
2069 | 75.0
74.9
74.9
73.7
72.0 | 17
18
19
20
21 | | | | | | | | rage | | | | ime, | .5 hrs | | | | | | | | 3364
5252
3076 | 835
628
825
817
808 | 5765
5729
5626
5457
5196 | 3705
3563
3566
3392
3125 | 3615
3585
3486
3324
3063 | 1510
1444
1582
1256
1071 | 716
719
709
700
692 | 637
643
635
633
635
engir | 5.855
5.765
5.657
5.395
4.947 | 8687
8679
8687
8695
8670 | .691
.692
.692
.690 | 18.06
18.18
18.27
18.19
18.31 | 18.13
18.02
18.09
18.21 | 18.50
18.17
18.24 | 54.66
55.12
55.28
55.44
55.51 | 2299
2216
2025 | 73.4
73.8
73.1
71.7
69.9 | 22
23
24
25
26 | | 8060 8 | 839 | 2282 | 2247 | 2196 | 1515 | 442 | 395 | 5.705 | 8679 | .691 | 10.89 | | 10.94 | 53.39 | 2400 | 71.3 | 27 | | 2043 8
2000 8
1904 8 | 834
831
826
818 | 2274
2224
2144
2059 | 2235
2188
2105
2014 | 2184
2138
2060
1975 | 1487
1419
1510
1166 | 440
455
455 | 393
391
395
400 | 5.728
5.602
5.387
5.059 | 8719
8705
8687
8695 | .594
.693
.692 | 10.98 | 10.90
10.89
10.95 | 11.00
10.99
11.03 | 53.84
53.89 | 2377
2276
2095 | 71.0
70.8
70.5
68.2 | 26
29
30
31 | Figure 1. - Cross section of Python turbine-propeller engine showing location of instrumentation. Figure 2. - Compressor rotor. | | | > | |----------|--|-------------| | | | - | • | | | | | | | | | | | | | | <u> </u> | | | | | | • | | | | • | | | | | | | | | Figure 3. - Compressor stator (lower half). | | | • | | | | |---|---|---|--|---|---| | | | | | | • | | | | | | | - | | | | | | · | | | | | | | | | | | • | · | | | | | | | • | • | | | | | | | • | | | | | | | | | · | • | | | | | Figure 4. - Gas-turbine-propeller-engine installation in altitude wind turnel. | | | | | | | • | |--|--|---|--|--|--|---| | | | | | | | • | • | | | | | | | | • | · | | | | | | | | | | | | - | | | | | | | | • | (a) Schematic diagram; viewed from upstream. Figure 5. - Instrumentation at engine inlet, station 1, 8 inches behind tip of cowling. (b) Typical detail sketch of total-pressure tubes, static-pressure wall orifices, and thermocouples. Figure 5. - Continued. Instrumentation at engine inlet, station 1, 8 inches behind tip of cowling. (c) Typical detail sketch of static-pressure tubes and wall orifices. Figure 5. - Concluded. Instrumentation at engine inlet, station 1, 8 inches behind tip of cowling. (a) Schematic diagram; viewed from upstream. Figure 6. - Instrumentation at compressor outlet, station 2, $3\frac{1}{4}$ inches upstream of burner-inlet flange. (b) Typical detail sketch of total-pressure tubes, static-pressure wall orifices, and thermocouples. Figure 6. - Concluded. Instrumentation at compressor-outlet, station 2, $3\frac{1}{4}$ inches upstream from burner-inlet flange. Ú NACA RM II50K24 Figure 7. - Location of instrumentation at turbine inlet, station 3, 3 inches upstream of turbine flange. Viewed from upstream. Figure 8. - Location of instrumentation in tail pipe, station 5, $5\frac{1}{4}$ inches upstream of exhaust-mozzle outlet. Viewed from upstream. Figure 9. - Variation of compressor performance with engine operational time in altitude wind tunnel. Cowl-inlet ram pressure, 1.03. Figure 10. - Variation of compressor efficiency with corrected turbine-inlet temperature. Cowl-inlet ram pressure ratio, 1.03. (b) Corrected turbine-inlet total temperature, T_3/θ_1 , 1800° R. Figure 11. - Variation of compressor efficiency with altitude. Cowl-inlet ram pressure ratio, 1.03. Figure 12. - Compressor performance map. Cowl-inlet ram pressure ratio, 1.03. (b) Altitude, 20,000 feet. Figure 12. - Continued. Compressor performance map. Cowl-inlet ram pressure ratio, 1.03. Figure 12. - Continued. Compressor performance map. Cowl-inlet ram pressure ratio, 1.03. (c) Altitude, 30,000 feet. Figure 12. - Concluded. Compressor performance map. Cowlinet ram pressure ratio, 1.03. Compressor-outlet velocity, V2, ft/sec (a) Typical velocity profile at compressor outlet. Altitude 10,000 feet; corrected engine speed, N/ $\sqrt{\theta_1}$, 8056 rpm; corrected turbine-inlet total temperature, T₃/ θ_1 , 1936 R. (b) Effect of altitude. Corrected engine speed, $N/\sqrt{\theta_1}$, 8282 rpm; corrected turbine-inlet total temperature T_3/θ_1 , 2035 R. Figure 13. - Velocity profiles at compressor-outlet. Cowl-inlet ram pressure ratio, 1.03. (d) Effect of corrected engine speed. Altitude, 10,000 feet; corrected turbine-inlet temperature, T_3/θ_1 , 1916 R. Figure 13. - Concluded. Velocity profiles at compressor outlet. Cowl-inlet ram pressure ratio, 1.03. (c) Effect
of engine speed. Altitude, 10,000 feet. Corrected turbine-inlet temperature (T3/01), 1916° R. Figure 14. - Compressor-rotor stage static-pressure ratio profile. Cowl-inlet ram pressure ratio, 1.03. 3 1176 01435 2109 THE PROPERTY AND A SECOND